40 research outputs found

    SETTING THE BEAM ONTO THE REFERENCE ORBIT IN NON SCALING FFAG ACCELERATORS

    Get PDF
    Abstract Described in the paper are systematic procedures to inject and keep the beam on the reference trajectory for a fixed energy, as applied to the EMMA non scaling FFAG accelerator. The notion of accelerated orbits in FFAG accelerators has been introduced and some of their properties have been studies in detail

    Stochastic collective dynamics of charged--particle beams in the stability regime

    Full text link
    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time--reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by λcN\lambda_c\sqrt{N}, where NN is the number of particles in the beam and λc\lambda_c the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schr\"odinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so--called ``quantum--like approaches'' to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam--field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.Comment: 15 pages, 9 figure

    Quantum cascade laser based hybrid dual comb spectrometer

    Get PDF
    Four-wave-mixing-based quantum cascade laser frequency combs (QCL-FC) are a powerful photonic tool, driving a recent revolution in major molecular fingerprint regions, i.e. mid- and far-infrared domains. Their compact and frequency-agile design, together with their high optical power and spectral purity, promise to deliver an all-in-one source for the most challenging spectroscopic applications. Here, we demonstrate a metrological-grade hybrid dual comb spectrometer, combining the advantages of a THz QCL-FC with the accuracy and absolute frequency referencing provided by a free-standing, optically-rectified THz frequency comb. A proof-of-principle application to methanol molecular transitions is presented. The multi-heterodyne molecular spectra retrieved provide state-of-the-art results in line-center determination, achieving the same precision as currently available molecular databases. The devised setup provides a solid platform for a new generation of THz spectrometers, paving the way to more refined and sophisticated systems exploiting full phase control of QCL-FCs, or Doppler-free spectroscopic schemes

    The CHORUS neutrino oscillation search experiment

    Get PDF
    The CHORUS experiment has successfully finished run I (320~000 recorded \numu\ CC in 94/95) and performed half of run II (225~000 \numu\ CC in 96). The analysis chain was exercised on a small data sample for the muonic \tdecay\ search using for the first time fully automatic emulsion scanning. This pilot analysis, resulting in a limit \sintth \leq 3 \cdot 10^{-2}, confirms that the CHORUS proposal sensitivity (\sintth \leq 3 \cdot 10^{-4}) is within reach in two years

    Fully Phase Stabilized Quantum Cascade Laser Frequency Comb

    Get PDF
    The road towards the realization of quantum cascade laser (QCL) frequency combs [1,2] has undoubtedly attracted ubiquitous attention from the scientific community. These devices promise to deliver an all-in-one (i.e. a single, miniature, active device) frequency comb synthesizer in a range as wide as the QCL spectral coverage itself (from about 4 microns to the THz range), with the unique possibility to tailor their spectral emission by band structure engineering. For these reasons, vigorous efforts have been spent to characterize the emission of four-wave-mixing (FWM) multi-frequency QCLs, aiming to seize their comb-like mode-locked operation [3–6]

    An Improved Model for Nonplanar Contact Sliding in Ball Bearings

    No full text
    corecore